Sains Malaysiana 53(4)(2024): 921-934

http://doi.org/10.17576/jsm-2024-5304-15

 

Dual Response Surface Optimization Based on Skill Scores

(Pengoptimuman Permukaan Tindak Balas Dwi Berdasarkan Skor Kemahiran)

 

AGAH KOZAN, MELIS ZEYBEK & ELIF KOZAN*

 

Department of Statistics, Faculty of Science, Ege University, Turkey

 

Received: 12 April 2023/Accepted: 14 March 2024

 

Abstract

The popular formulations of dual-response optimization are constructed on minimizing a function of bias and system variability. This study provides an opportunity to evaluate the dual response surface (DRS) problem from a different perspective by adapting two new terms such that internal and external quality forecasts. The background of the proposed approach focuses on the relationship between internal and external quality forecasts and discusses the DRS problem in regards of skill scores by defining a model quality criterion. Skill is the relative accuracy of the forecast and defines a correspondence between forecast of interest and reference forecasts. The reference forecast does not require any knowledge or modelling; thus, it is an unskilled forecast. In this context, skill score is a measure of this relative improvement and widely used in evaluating the performance of operational and experimental forecasts. An alternative version of mean square error (MSE) which is reconstructed by skill scores and model quality criterion is proposed as an objective function for the DRS problem. Integrating the relationship between internal and external quality forecasts into such a response function can improve the effectiveness and cooperation of the applied technique. The proposed approach has a flexible structure and provides decision makers alternative solutions for different values of the model quality criterion. The proposed procedure is discussed by conducted a simulation study and demonstrated in an engineering process.

 

Keywords: Dual response optimization; mean square error; model quality criterion; robust parameter design; skill scores

 

Abstrak

Formulasi popular pengoptimuman gerak balas dual dibina untuk meminimumkan fungsi bias dan kebolehubahan sistem. Kajian ini memberi peluang untuk menilai masalah permukaan gerak balas dual (DRS) dari perspektif yang berbeza dengan menyesuaikan dua istilah baharu seperti ramalan kualiti dalaman dan luaran. Latar belakang pendekatan yang dicadangkan memfokuskan pada hubungan antara ramalan kualiti dalaman dan luaran dan membincangkan masalah DRS dalam hal skor kemahiran dengan mentakrifkan kriteria kualiti model. Kemahiran ialah ketepatan relatif ramalan dan mentakrifkan perpadanan antara ramalan kepentingan dan ramalan rujukan. Ramalan rujukan tidak memerlukan sebarang pengetahuan atau pemodelan; oleh itu, ia adalah ramalan yang tidak mahir. Dalam konteks ini, skor kemahiran adalah ukuran peningkatan relatif ini dan digunakan secara meluas dalam menilai prestasi ramalan operasi dan uji kaji. Versi alternatif bagi ralat min kuasa dua (MSE) yang dibina semula oleh skor kemahiran dan kriteria kualiti model dicadangkan sebagai fungsi objektif untuk masalah DRS. Mengintegrasikan hubungan antara ramalan kualiti dalaman dan luaran ke dalam fungsi tindak balas sedemikian boleh meningkatkan keberkesanan dan kerjasama teknik yang digunakan. Pendekatan yang dicadangkan mempunyai struktur yang fleksibel dan menyediakan penyelesaian alternatif pembuat keputusan untuk nilai yang berbeza bagi kriteria kualiti model. Prosedur yang dicadangkan dibincangkan dengan menjalankan kajian simulasi dan ditunjukkan dalam proses kejuruteraan.

 

Kata kunci: Kriteria kualiti model; pengoptimuman gerak balas dual; ralat min kuasa dua; reka bentuk parameter teguh; skor kemahiran

 

REFERENCES

Baba, I., Midi, H., Ibragımov, G. & Rana, S. 2022. A new optimization scheme for robust design modeling with unbalanced data. Sains Malaysiana 51(5): 1577-1586.

Box, G.E.P. 1985. Discussion of “Off-line quality control, parameter design and the Taguchi method”. Journal of Quality Technology 17: 198-206.

Box, G.E.P. & Draper, N.R. 1987. Empirical Model-Building and Response Surfaces. Canada: John Wiley & Sons.

Box, G.E.P. & Wilson, K.B. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Methodological) 13(1): 1-38.

Copeland, K.A. & Nelson, P.R. 1996. Dual response optimization via direct function minimization. Journal of Quality Technology 28(1): 331-336.

Del Castillo, E. & Montgomery, D.C. 1993. A nonlinear programming solution to the dual response problem. Journal of Quality Technology 25: 199-204.

Del Castillo, E., Colosimo, B.M. & Alshraideh, H. 2012. Bayesian modeling and optimization of functional responses affected by noise factors. Journal of Quality Technology 44(2): 117-135.

Ding, R., Lin, D.K.J. & Wei, D. 2004. Dual-response surface optimization: A weighted MSE approach. Quality Engineering 16(3): 377-385.

Edamo, M.L., Ukumo, T.Y., Lohani, T.K., Miranic, K.B. & Ayele, M.A. 2022(a). Flood inundation mapping under climate change scenarios in the Boyo watershed of Southern Ethiopia. Journal of Water and Climate Change 13: 3170-3178.

Edamo, M.L., Bushira, K.M., Ukumo, T.Y., Ayele, M.A., Alaro, M.A. & Borko, H.B. 2022(b). Effect of climate change on water availability in Bilate catchment, Southern Ethiopia. Water Cycle 3: 86-99.

Gupta, H.V., Kling, H., Yilmaz, K.K. & Martinez, G.F. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377: 80-91.

Iqbal, A., Mondal, M.S., Khan, M.S.A., Hakvoort, H. & Veerbeek, W. 2022. Flood propagation processes in the Jamuna River Floodplain in Sirajganj. In Water Management: A View from Multidisciplinary Perspectives, edited by Tarekul Islam, G.M., Shampa, S. & Chowdhury, A.I.A. Springer. pp. 45-67.

Kim, K.J. & Lin, D.K.J. 1998. Dual response surface optimization: A fuzzy modeling approach. Journal of Quality Technology 30: 1-10.

Kim, Y.J. & Cho, B.R. 2002. Development of priority-based robust design. Quality Engineering 14: 355-363.

Köksoy, O. 2006. Multiresponse robust design: Mean square error (MSE criterion). Applied Statistics and Computation 175: 1716-1729.

Köksoy, O. & Doganaksoy, N. 2003. Joint optimization of mean and standard deviation in response surface experimentation. Journal of Quality Technology 35(3): 239-252.

Köksoy, O. & Fan, S.S. 2012. An upside-down normal loss function-based method for quality improvement. Engineering Optimization 44(8): 935-945.

Köksoy, O. & Yalcinoz, T. 2006. Mean square error criteria to multi-response process optimization by a new genetic algorithm. Applied Mathematics and Computation 175: 1657-1674.

Lin, D.K.J. & Tu, W. 1995. Dual response surface. Journal of Quality Technology 27(1): 34-39.

Li, H., Jiang, C., Choy, S., Wang, X., Zhang, K. & Zhu, D.A. 2022. Comprehensive study on factors affecting the calibration of potential evapotranspiration derived from the Thornthwaite Model. Remote Sensing 14(18): 4644.

Lizotte, D.J., Greiner, R. & Schuurmans, D. 2012. An experimental methodology for response surface optimization methods. Journal of Global Optimization 52(4): 698-736.

Midi, H. & Aziz, N.A. 2019. High breakdown estimator for dual response optimization in the presence of outliers. Sains Malaysiana 48(8): 1771-1776.

Murphy, A.H. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review 116: 2417-2424.

Murphy, A.H. 1993. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting 8: 281-293.

Mushore, T.D., Mutanga, O. & Odindi, J. 2022. Estimating urban LST using multiple remotely sensed spectral indices and elevation retrievals. Sustainable Cities and Society 78: 103623.

Nash, J.E. & Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology 10: 282-290.

Nosratpour, R., Rahimzadegan, M. & Beikahmadi, N. 2022. Introducing a merged precipitation satellite model using satellite precipitation products, land surface temperature, and precipitable water vapor. Geocarto International 37(26): 11782-11812.

Park, C. & Cho, B.R. 2003. Development of robust design under contaminated and non-normal data. Quality Engineering 15(3): 463-469.

Robinson, T.J., Wulff, S.S., Montgomery, D.S. & Khuri, A.I. 2006. Robust parameter design using generalized linear mixed models. Journal of Quality Technology 38: 65-75.

Shaibu, A.B. & Cho, B.R. 2009. Another view of dual response surface modeling and optimization in robust parameter design. The International Journal of Advanced Manufacturing Technology 41: 631-641.

Shin, S. & Cho, B.R. 2005. Bias-specified robust design optimization and analytical solutions. Computers & Industrial Engineering 48: 129-148.

Steenackers, G. & Guillaume, P. 2008. Bias-specified robust design optimization: A generalized mean squared error approach. Computers & Industrial Engineering 54: 259-268.

Şen, Z. 2021. Model efficiency performance assessment through a standard triangular diagram (STD). Modeling Earth Systems and Environment 7: 1193-1205.

Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products and Processes. New York: Kraus International Publications.

Tang, L.C. & Xu, K. 2002. A unified approach for dual response surface optimization. Journal of Quality Technology 34(4): 437-447.

Truong, N.K.V. & Shin, S. 2012. Development of a new robust design method based on Bayesian perspectives. International Journal of Quality Engineering and Technology 3(1): 50-78.

Vining, G.G. & Myers, R.H. 1990. Combining Taguchi and response surface philosophies: A dual response approach. Journal of Quality Technology 22(1): 38-45.

Weglarczyk, S. 1998. The interdependence and application of some statistical quality measures for hydrological models. Journal of Hydrology 206: 98-103.

Wheatcroft, E. 2019. Interpreting the skill score form of forecast performance metrics. International Journal of Forecasting 35(2): 573-579.

Zeybek, M. 2020. Interval robust design under contaminated and non-normal data, Communications in Statistics - Theory and Methods 49: 5406-5418.

Zeybek, M. & Köksoy, O. 2020. The effects of gamma noise on quality improvement. Communications in Statistics – Simulation and Computation 49(7): 1783-1797.

Zeybek, M. 2018. Nash-Sutcliffe efficiency approach for quality improvement. Journal of Applied Mathematics and Computation 2(11): 496-503.

Zeybek, M. & Köksoy, O. 2016. Optimization of correlated multi-response quality engineering by the upside-down normal loss function. Engineering Optimization 48(8): 1419-1431.

Zeybek, M., Köksoy, O. & Robinson, T.J. 2020. A dual‐response surface modeling approach for gamma robust design. Quality and Reliability Engineering International 36(3): 315-327.

 

*Corresponding author; email: elif.kozan@ege.edu.tr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous